Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Mesoscale‐to‐microscale coupling is an important tool for conducting turbulence‐resolving multiscale simulations of realistic atmospheric flows, which are crucial for applications ranging from wind energy to wildfire spread studies. Different techniques are used to facilitate the development of realistic turbulence in the large‐eddy simulation (LES) domain while minimizing computational cost. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method using momentum perturbation (SCPM‐M) to accelerate turbulence generation in boundary‐coupled LES simulations using the Weather Research and Forecasting model. We simulate a convective boundary layer (CBL) to characterize the production and dissipation of turbulent kinetic energy (TKE) and the variation of TKE budget terms. Furthermore, we evaluate the impact of applying momentum perturbations of three magnitudes below, up to, and above the CBL on the TKE budget terms. Momentum perturbations greatly reduce the fetch associated with turbulence generation. When applied to half the vertical extent of the boundary layer, momentum perturbations produce an adequate amount of turbulence. However, when applied above the CBL, additional structures are generated at the top of the CBL, near the inversion layer. The magnitudes of the TKE budgets produced by SCPM‐M when applied at varying heights and with different perturbation amplitudes are always higher near the surface and inversion layer than those produced by No‐SCPM, as are their contributions to the TKE. This study provides a better understanding of how SCPM‐M reduces computational costs and how different budget terms contribute to TKE in a boundary‐coupled LES simulation.more » « less
- 
            The intensity and frequency of wildfires in California (CA) have increased in recent years, causing significant damage to human health and property. In October 2007, a number of small fire events, collectively referred to as the Witch Creek Fire or Witch Fire started in Southern CA and intensified under strong Santa Ana winds. As a test of current mesoscale modeling capabilities, we use the Weather Research and Forecasting (WRF) model to simulate the 2007 wildfire event in terms of meteorological conditions. The main objectives of the present study are to investigate the impact of horizontal grid resolution and planetary boundary layer (PBL) scheme on the model simulation of meteorological conditions associated with a Mega fire. We evaluate the predictive capability of the WRF model to simulate key meteorological and fire-weather forecast parameters such as wind, moisture, and temperature. Results of this study suggest that more accurate predictions of temperature and wind speed relevant for better prediction of wildfire spread can be achieved by downscaling regional numerical weather prediction products to 1 km resolution. Furthermore, accurate prediction of near-surface conditions depends on the choice of the planetary boundary layer parameterization. The MYNN parameterization yields more accurate prediction as compared to the YSU parameterization. WRF simulations at 1 km resolution result in better predictions of temperature and wind speed than relative humidity during the 2007 Witch Fire. In summary, the MYNN PBL parameterization scheme with finer grid resolution simulations improves the prediction of near-surface meteorological conditions during a wildfire event.more » « less
- 
            Abstract. Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The results are in good agreement with observations recorded during the event. Extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making and emergency response management during wildfire events.more » « less
- 
            Disturbance events can happen at a temporal scale much faster than wildland fire fuel data updates. When used as input for wildland fire behavior models, outdated fuel datasets can contribute to misleading forecasts, which have implications for operational firefighting, mitigation, and wildland fire research. Remote sensing and machine learning methods can provide a solution for on-demand fuel estimation. Here, we show a proof of concept using C-band synthetic aperture radar and multispectral imagery, land cover classes, and tree mortality surveys to train a random forest classifier to estimate wildland fire fuel data in the East Troublesome Fire (Colorado) domain. The algorithm classified over 80% of the test dataset correctly, and the resulting wildland fire fuel data was used to simulate the East Troublesome Fire using the coupled atmosphere—wildland fire behavior model, WRF-Fire. The simulation using the modified fuel inputs, where 43% of original fuels are replaced with fuels representing dead trees, improved the burn area forecast by 38%. This study demonstrates the need for up-to-date fuel maps available in real time to provide accurate prediction of wildland fire spread, and outlines the methodology based on high-resolution satellite observations and machine learning that can accomplish this task.more » « less
- 
            Abstract On 30 December 2021, the Marshall Fire devastated the Boulder, Colorado region. The fire initiated in fine fuels in open space just southeast of Boulder and spread rapidly due to the strong, downslope winds that penetrated into the Boulder Foothills. Despite the increasing occurrence of wildland‐urban interface (WUI) disasters, many questions remain about how fires progress through vegetation and the built environment. To help answer these questions for the Marshall Fire, we use a coupled fire‐atmosphere model and Doppler on Wheels (DOW) observations to study the fire's progression as well as examine the physical drivers of its spread. Evaluation of the model using the DOW suggests that the model is able to capture general characteristics of the flow field; however, it does not produce as robust of a hydraulic jump as the one observed. Our results highlight limitations of the model that should be addressed for successful WUI simulations.more » « less
- 
            Abstract Predicting the evolution of burned area, smoke emissions, and energy release from wildfires is crucial to air quality forecasting and emergency response planning yet has long posed a significant scientific challenge. Here we compare predictions of burned area and fire radiative power from the coupled weather/fire‐spread model WRF‐Fire (Weather and Research Forecasting Tool with fire code), against simpler methods typically used in air quality forecasts. We choose the 2019 Williams Flats Fire as our test case due to a wealth of observations and ignite the fire on different days and under different configurations. Using a novel re‐gridding scheme, we compare WRF‐Fire's heat output to geostationary satellite data at 1‐hr temporal resolution. We also evaluate WRF‐Fire's time‐resolved burned area against high‐resolution imaging from the National Infrared Operations aircraft data. Results indicate that for this study, accounting for containment efforts in WRF‐Fire simulations makes the biggest difference in achieving accurate results for daily burned area predictions. When incorporating novel containment line inputs, fuel density increases, and fuel moisture observations into the model, the error in average daily burned area is 30% lower than persistence forecasting over a 5‐day forecast. Prescribed diurnal cycles and those resolved by WRF‐Fire simulations show a phase offset of at least an hour ahead of observations, likely indicating the need for dynamic fuel moisture schemes. This work shows that with proper configuration and input data, coupled weather/fire‐spread modeling has the potential to improve smoke emission forecasts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
